Worksheet -14 Subject: - Mathematics Class: - VIII Teacher: - Ms. Nancy

Name: _____ Class & Sec: _____ Roll No. ____ Date: 19.05.2020

CH1 Test RATIONAL NUMBERS

1. Represent $\frac{7}{4}$ on the number line.

2. Write five rational numbers greater than -2.

3. State True or False

- i. When we multiply a rational number with 1 we get same number.
- ii. A rational number is always a whole number.
- iii. All the whole numbers are rational numbers.
- iv. All the integers are rational numbers.

4. Fill in the blanks

- a. Zero has _____ reciprocal.
- b. The product of a rational no. and its inverse is _____.
- c. The numbers 5 and -5 are their own _____.
- d. The number _____ is not the reciprocal of any number.

5. Match the columns

Column A	Column B
i. The multiplicative inverse of $1 rac{7}{11}$	a. Not defined
ii. The reciprocal of -1	b. $-1\frac{7}{11}$
iii. The reciprocal of 0	c1
iv. Negative of $1\frac{7}{11}$	d. 11/18

- 6. Represent $\frac{3}{4}$ on the number line.
- 7. Arrange in ascending order

$$\frac{2}{5}, \frac{1}{3}, \frac{-3}{4}, \frac{1}{6}$$

8. Which is greater?

a.
$$\frac{9}{-13}$$
 and $\frac{7}{-12}$

b.
$$\frac{-8}{9}$$
 and $\frac{-9}{10}$

9. using appropriate properties find : $\frac{2}{5} \times \left(-\frac{3}{7}\right) - \frac{1}{6} \times \frac{3}{2} + \frac{1}{14} \times \frac{2}{5}$.

SOLUTIONS

1. $\frac{7}{4} = 1\frac{3}{4}$

2. Five rational numbers greater than -2 are:

$$\frac{-3}{2}, -1, \frac{-1}{2}, 0, \frac{1}{2}$$

- 3. i. True
 - ii. False, it is not necessary that every rational number is whole number.
 - iii. True
 - iv. True
- 4. a. Zero

- b. One
 - c. Reciprocals
- d. Zero

Negative

- 5. a. d
 - b. c
 - c. a
 - d. b

7. LCM of 5, 3, 4 and 6 is 60.

So,
$$\frac{(12, 20, -15, 10)}{60}$$

Ascending order: $\frac{10}{60}$, $\frac{10}{60}$, $\frac{12}{60}$, $\frac{20}{60}$

8. a.
$$\frac{(9\times(-1)}{(-13\times(-1))} = \left(\frac{-9}{13}\right)$$
 and $\frac{(7\times(-1))}{(-12\times(-1))} = \left(\frac{-7}{12}\right)$

LCM of 13 and 12 is 156

$$\frac{\frac{(-108,-91)}{156}}{\frac{-108}{156}} < \frac{-91}{156}$$
 Hence, $\frac{-7}{12}$ is greater

b. LCM of 9 and 10 is 90.

$$\frac{(-80,-81)}{90}$$

$$\frac{-81}{90} < \frac{-80}{90}$$
Hence, -8 is grant

Hence, $\frac{90}{-8}$ is greater.

9.
$$\frac{2}{5} \times \left(-\frac{3}{7}\right) - \frac{1}{6} \times \frac{3}{2} + \frac{1}{4} \times \frac{2}{5}$$

$$= \frac{2}{5} \times \left(-\frac{3}{7}\right) - \frac{1}{6} \times \frac{3}{2} + \frac{2}{5} \times \frac{1}{14} \dots [\text{By commutativity}]$$

$$= \frac{2}{5} \times \left(-\frac{3}{7}\right) + \frac{2}{5} \times \frac{1}{14} - \frac{1}{6} \times \frac{3}{2} \dots [\text{By associativity}]$$

$$= \frac{2}{5} \times \left\{\left(-\frac{3}{7}\right) + \frac{1}{14}\right\} - \frac{1}{6} \times \frac{3}{2} \dots [\text{By distributivity}]$$

$$= \frac{2}{5} \times \left\{\frac{(-6)+1}{14}\right\} - \frac{1}{6} \times \frac{3}{2}$$

$$= \frac{2}{5} \times \left\{\frac{-5}{14}\right\} - \frac{1}{6} \times \frac{3}{2} = \frac{-1}{7} - \frac{1}{4}$$

$$= \frac{-4-7}{28} = \frac{-11}{28}$$

Elements of Parallelograms

There are four sides and four angles in a parallelogram. Some of these are equal. The following are some terms associated with these elements that we need to remember.

Here, we have a parallelogram ABCD.

AB and DC, AD and BC are pairs of opposite sides.

∠A and ∠C, ∠B and ∠D are pairs of opposite angles. A

AB and BC are adjacent sides. (Find another pair of adjacent sides)

∠A and ∠B are adjacent angles. (Find another pair of adjacent angles)

These are the elements of a parallelogram.

Class: VIII

Exercise 3.3

Question 1

Given a parallelogram ABCD. Complete each statement along with the definition or property used.

Answer 1

(i) AD = BC [Since opposite sides of a parallelogram are equal]
 (ii) ∠ DCB = ∠ DAB [Since opposite angles of a parallelogram are equal]
 (iii) OC = OA [Since diagonals of a parallelogram bisect each other]
 (iv) m∠ DAB + m∠ CDA = 180° [Adjacent angles in a parallelogram are supplementary]

Question 2

Consider the following parallelograms. Find the values of the unknowns x, y, z.

Note: For getting correct answer, read 3° = 30° in figure (iii)

Answer 2

(i) ∠ B + ∠ C = 180° [Adjacent angles in a parallelogram are supplementary]

$$\Rightarrow 100^{\circ} + x = 180^{\circ}$$
$$\Rightarrow x = 180^{\circ} - 100^{\circ} = 80^{\circ}$$

and $z = x = 80^{\circ}$ [Since opposite angles of a parallelogram are equal] also $y = 100^{\circ}$ [Since opposite angles of a parallelogram are equal]

(ii) x + 50° = 180° [Adjacent angles in a parallelogram are supplementary]

$$\Rightarrow$$
 x = 180° - 50° = 130°

$$\Rightarrow$$
 z = x = 130°

[Corresponding angles]

(iii)
$$x = 90^{\circ}$$

$$\Rightarrow$$
 y + x + 30° = 180°

[Angle sum property of a triangle]

$$\Rightarrow$$
 y + 90° + 30° = 180°

$$\Rightarrow$$
 y = 180° - 120° = 60°

$$\Rightarrow$$
 z = y = 60°

[Alternate angles]

(iv)
$$z = 80^{\circ}$$

$$\Rightarrow$$
 x + 80° = 180°

[Adjacent angles in a parallelogram are suppler

$$\Rightarrow$$
 x = 180° $-$ 80° = 100°

and
$$y = 80^{\circ}$$

(v) y = 112°

$$\Rightarrow$$
 40° + y + x = 180°

[Opposite angles are equal in a parallelogram]

[Angle sum property of a triangle]

$$\Rightarrow$$
 40° + 112° + x = 180°

$$\Rightarrow$$
 152° + x = 180°

$$\Rightarrow$$
 x = 180° - 152° = 28°

[Alternate angles]